Hawaiʻi's Technology Community

This nice little blurb from Pacific Business News popped up in my morning's Google Reader session.

Looks like Lockheed-Martin is making a Renewable Energy investment in Hawaii, specifically a form of Ocean Thermal Energy Conversion (OTEC).

All I can say is, "It's about *bleep*ing time!" While Lockheed doesn't get glowing reviews from my old college friends who worked at their Aerospace division in Sunnyvale, Lockheed DOES have their hand in a lot of fascinating Engineering projects.

Personally, I'm thrilled at the prospect of Lockheed growing their Hawaii operations, as that can only mean more Good Paying Jobs for Engineers. Hopefully a win for local Engineers born, raised, educated, and struggling to justify remaining in Hawaii.

With so many natural resources available via Solar, Waves, GeoThermal, and Deep-Sea cooling, and decades of knowledge on how to use those energy sources, I'm surprised it has taken this long for Hawaii to be noticed.

IMHO, the Big Island -- particularly Hilo -- is a prime candidate to be at the forefront of the world's Renewable Energy research. I'd love nothing more than to have Governor Lingle, and President-Elect Obama promote Renewable Energy programs there, in an effort to JUMP-START America's languishing ability to innovate Engineering Solutions for the world to embrace.

If anything, a Renewable Energy initiative for Hawaii would be a much better investment than the failed Space Shuttle landing strip idea. Which Hawaii politicians promoted that idea, again? Oh yeah. :-p

And for the record, I hereby call dibbs on the term "Renewable Valley" for Hawaii! :o)

Views: 116

Replies to This Discussion

Cool. I agree. Perhaps the University of Hawaii will create a degree program or a certificate program in renewables, as well, as this would help feed an ecosystem of renewables entrepreneurs in your stafe and the VCs and other investors who can support them......Kathleen
This is fantastic news! I'm surprised the local media hasn't made a bigger deal out of it. Hawaii is the perfect place to serve as an example to the country of how to get off fossil fuels.

> I hereby call dibbs on the term "Renewable Valley" for Hawaii! :o)

Damn! I was just going to call that.
Ocean Power Technologies and Lockheed Martin Developing Utility-Scale Wave Power System

Here is the whole article.. very cool stuff!
"The Military Adopts Renewables in Hawaii"

The first in a series of blogs from the road on the development of clean energy.


I'll be posting a series of blogs as I travel for a three-week fellowship through the East-West Center, based in Hawaii. The trip will include a look at what's happening with clean energy in California and China. The first stop is Hawaii, where the particular energy challenges of this island state are driving a push to develop renewable energy.

Hawaii relies heavily on oil (which has to be imported) and as a result electricity prices are roughly two to five times the average price on the mainland. Hawaii is also home to multiple military bases and the headquarters for U.S. Pacific Command, which overseas military operations throughout Asia and the Pacific, over half of the world's total area. Like the state of Hawaii, the military also has special energy needs. In the field, it's reliance on fossil fuels requires expensive and vulnerable supply lines. Its bases also depend on the aging power grid in the U.S., which likewise is vulnerable to attack.

Tomorrow I'll write more about what the state of Hawaii is doing to reduce its use of oil. Today, the focus is on the military, which is planning to reduce its fossil energy use in Hawaii by about 70 percent by 2030 (not including the fuel used by tactical vehicles, like troop transports) through a combination of renewable energy, biofuels and energy efficiency. A lot of what it's doing is conventional stuff, such as installing solar panels and energy analysis of buildings to identify wasted energy.

But it's also doing some unusual things. The U.S. Navy has paid Lockheed Martin $9.32 million to develop Ocean Thermal Energy Conversion (OTEC) technology, which uses temperature differences between warm surface waters and deep, cold water to generate power. (It can use a Rankine cycle that involves a liquid with a low boiling point. Warm sea water boils the liquid, producing steam that drives a turbine to generate electricity. Cold water condenses the coolant to a liquid to be reused.) The idea behind OTEC isn't new, and the potential to generate electricity is vast, but it hasn't been used commercially because it's expensive. It requires costly infrastructure to deliver cold water from the depths, and it doesn't produce much power for the amount of equipment required because the temperature difference between the cold and warm water isn't very much. The hope is that tricks can be found to lower the energy needed to deliver the cold water, lower materials costs, and to make the whole system durable enough to eventually pay for itself. The technology is risky--in addition to its high initial capital costs, the systems are vulnerable to storms. But it's attractive to the military because it could produce power day and night--it's not intermittent like solar and wind.

The military is also investing in solar-powered hydrogen production. This is in part to produce hydrogen for vehicles (either fuel cell cars or internal combustion engines made to burn hydrogen). What's more interesting is the potential of hydrogen as an energy storage medium. A large part of wind power produced in Hawaii is wasted because the power is generated at night, when demand is low, and storing that energy as hydrogen, which can be used to generate electricity when it's needed, could be cheaper (though much less efficient) than using batteries. The military could use solar powered hydrogen generation in the field to power its bases, without the need for supply trucks to deliver diesel for generators.

Both hydrogen energy storage and OTEC are expensive technologies that aren't going to be used for large scale power any time soon. But in investing in these technologies, the military may be performing a very useful service for clean energy. Companies with new energy technologies have a problem. For many other new technologies--better flat screen televisions, say--companies can count on a cadre of early adopters to pay exorbitant prices, which can pave the way for larger scale production to drive down costs. But in general, electricity consumers won't pay much more, if any, for clean energy. Certainly not if the costs are several times that of conventional power. Without the early adopters, solar and wind companies have relied on government mandates and subsidies, but now that those technologies are becoming cheaper, alternatives like OTEC, which have a lot of potential and have the advantage of being more reliable than solar or wind, might not be able to compete, even under the mandates and subsidies (in states with renewable energy mandates, utilities typically turn to solar and wind). The military is stepping in as an early adopter--with immense purchasing power. Of course, it's risky, but the pay off could be big.

Read the original article at MIT Technology Review here .....

Rubén Peña



web design, web development, localization

© 2024   Created by Daniel Leuck.   Powered by

Badges  |  Report an Issue  |  Terms of Service